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Exact second-order structure-function
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Equations that follow from the Navier–Stokes equation and incompressibility but
with no other approximations are ‘exact’. Exact equations relating second- and third-
order structure functions are studied, as is an exact incompressibility condition on
the second-order velocity structure function. Opportunities for investigations using
these equations are discussed. Precisely defined averaging operations are required
to obtain exact averaged equations. Ensemble, temporal and spatial averages are
all considered because they produce different statistical equations and because they
apply to theoretical purposes, experiment and numerical simulation of turbulence.
Particularly simple exact equations are obtained for the following cases: (i) the trace
of the structure functions, (ii) DNS that has periodic boundary conditions, and
(iii) an average over a sphere in r-space. Case (iii) introduces the average over
orientations of r into the structure-function equations. The energy dissipation rate ε
appears in the exact trace equation without averaging, whereas in previous formu-
lations ε appears after averaging and use of local isotropy. The trace mitigates the
effect of anisotropy in the equations, thereby revealing that the trace of the third-order
structure function is expected to be superior for quantifying asymptotic scaling laws.
The orientation average has the same property.

1. Introduction
Equations relating statistics for turbulence studies, such as Kolmogorov’s (1941)

equation, are asymptotic. This has required experimenters to seek turbulence that
satisfies the criteria of the asymptotic state. The present approach is to derive exact
statistical equations. These can be used to determine all effects contributing to the
balance of statistical equations. By ‘exact’ we mean that the equations follow from
the Navier–Stokes equation and the incompressibility condition with no additional
approximations.

Exact equations have the potential to detect the limitations of direct numerical
simulation (DNS) and of experiments and to study the approach to local homogeneity
and local isotropy and scaling laws (Hill 2001). For those purposes, the averaging
operation must be exactly defined and implemented; that is done here. The methods
developed here can be used on the exact structure-function equations of all orders N;
those equations are in Hill (2001). It is useful to further investigate the exact second-
order (N = 2) equation, which relates second- and third-order structure functions,
because it has special simplifications that the higher-order equations (N > 2) do not
possess and because the second-order equation is the most familiar. Exact equations
satisfy the need perceived by Yaglom (1998) for careful derivation of dynamic-theory
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equations and the perceived value placed by Sreenivasan & Antonia (1997) on aspects
of turbulence that can be understood precisely. Experimental data have been used
to evaluate the balance of Kolmogorov’s equation (Antonia, Chambers & Browne
1983; Chambers & Antonia 1984) and generalizations of it (Lindborg 1999; Danaila
et al. 1999a, b; Antonia et al. 2000). This report supports such experimental work as
well as precise use of DNS by giving exact equations to be used in such evaluations.
The connection between the derivations presented here and any experiment or DNS
is important because the equations relate several statistics and therefore are most
revealing when data are substituted into them.

The equations derived here are exact for every flow, whether laminar or turbulent,
provided that no forces act on the fluid at the points of measurement, denoted below
by x and x′. Forces can be applied near the point of measurement; e.g. the equations
are exact for hot-wire anemometer supports just downstream of the measurement
points. The cases of forces at the points of measurement and throughout the fluid are
considered in Hill (2002).

The ensemble average is typically used for theoretical studies, the temporal average
for experimental data, and the spatial average for data from DNS; thus all three are
employed here. Ensemble, time and space averages are not interchangeable because
the averages commute differently with differential operators within the dynamical
equations. For the homogeneous case and infinite averaging volume, the spatially
averaged equation (3.9) and the ensemble-averaged equation (3.1) reduce to the same
form, and similarly for the temporally averaged equation for the stationary case and
infinite averaging time.

Ongoing interest in turbulence intermittency includes accurate evaluation of inertial-
range exponents of structure functions, for which purpose precise definition of an
observed inertial range is needed. The third-order structure function can serve this
purpose because it has a well-known inertial-range power law and the 4/5 coefficient
(Kolmogorov 1941). Deviations from the 4/5 coefficient are observed in experiments;
this casts doubt on the precision with which measured exponents apply to the
intermittency phenomenon (Sreenivasan & Dhruva 1998). The equations derived
here, when evaluated with data, can reveal all effects contributing to the deviation
from Kolmogorov’s 4/5 law.

The plan of the paper is to develop the mathematics in § 2 and § 3; § 2 contains
necessary definitions and unaveraged equations; §§ 3.1–3.3 contain the definition of
averaging operations and their application to produce averaged equations. Section 3.4
contains the simplifications for the case of spatially periodic DNS. Section 3.5 defines
the sphere average in r-space and its associated orientation average and relates these
to the work of Kolmogorov (1962) and Obukhov (1962); Kolmogorov’s equation is
derived in § 3.6 as a useful point of reference. Discussion of opportunities that these
equations present for future investigations is in § 4.

2. Exact unaveraged two-point equations
The equations given here relate two-point quantities and are obtained from

the Navier–Stokes equations and incompressibility. The two spatial points are de-
noted x and x′; they are independent variables. They have no relative motion;
e.g. anemometers at x and x′ are fixed relative to one another. To be concise, vel-
ocities are denoted ui = ui(x, t), u

′
i = ui(x

′, t), energy dissipation rates ε = ε(x, t),
ε′ = ε(x′, t), etc; p is the pressure divided by the density (density is constant), ν is
kinematic viscosity, and ∂ denotes partial differentiation with respect to its subscript
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variable. Summation is implied by repeated Roman indices; e.g. ∂xn∂xn is the Laplacian
operator. For brevity, define:

dij ≡ (ui − u′i)(uj − u′j), (2.1)

dijn ≡ (ui − u′i)(uj − u′j)(un − u′n), (2.2)

τij ≡ (∂xip− ∂x′i p′)(uj − u′j) + (∂xj p− ∂x′j p′)(ui − u′i), (2.3)

eij ≡ (∂xnui)(∂xnuj) + (∂x′nu
′
i)(∂x′nu

′
j), (2.4)

Fijn ≡ (ui − u′i)(uj − u′j) 1
2
(un + u′n). (2.5)

Change variables from x and x′ to the sum and difference independent variables:

X ≡ (x+ x′)/2 and r ≡ x− x′ and define r ≡ |r|.
The derivatives ∂Xi and ∂ri are related to ∂xi and ∂x′i by

∂xi = ∂ri + 1
2
∂Xi , ∂x′i = −∂ri + 1

2
∂Xi , ∂Xi = ∂xi + ∂x′i , ∂ri = 1

2
(∂xi − ∂x′i). (2.6)

For any functions f(x, t) and g(x′, t), (2.6) gives

∂ri[ f(x, t)± g(x′, t)] = ∂Xi[ f(x, t)∓ g(x′, t)]/2. (2.7)

Use of (2.6) in (2.3) and in the trace of (2.4) and rearranging terms gives

τij = −2(p− p′)(sij − s′ij) + ∂Xi[(p− p′)(uj − u′j)] + ∂Xj [(p− p′)(ui − u′i)], (2.8)

eii = ν−1(ε+ ε′) + ∂Xn∂Xn(p+ p′), (2.9)

where

sij ≡ (∂xiuj + ∂xj ui)/2 and ε ≡ 2νsijsij . (2.10)

To obtain (2.9) we used Poisson’s equation, ∂xn∂xnp = −∂xiuj∂xj ui. Incompressibility
requires sii = 0; thus, the trace of (2.8) is

τii = 2∂Xi[(p− p′)(ui − u′i)]. (2.11)

Of course, all quantities above are local and instantaneous quantities.

2.1. Use of the Navier–Stokes equation

The Navier–Stokes equation and incompressibility give

∂tdij + ∂XnFijn + ∂rndijn = −τij + 2ν(∂rn∂rndij + 1
4
∂Xn∂Xndij − eij). (2.12)

As a check, one sees that (2.12) can be obtained from equation (2.9) of Hill (2001).
The trace of (2.12) and substitution of (2.9) and (2.11) gives

∂tdii + ∂XnFiin + ∂rndiin = 2ν∂rn∂rndii − 2(ε+ ε′) + w, (2.13)

where

w = −2∂Xi[(p− p′)(ui − u′i)] + 1
2
ν∂Xn∂Xndii − 2ν∂Xn∂Xn(p+ p′). (2.14)

The first term in (2.14) is −τii from (2.11) and the last term in (2.14) arises from eii in
(2.9); the disparate terms in (2.14) are given the symbol w for subsequent convenience
and brevity. The limit r → 0 applied to (2.13) recovers the definition of ε in (2.10).
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2.2. Exact second-order incompressibility relationships

Because x and x′ are independent variables, ∂xiu
′
j = 0, and ∂x′i uj = 0. Then, incom-

pressibility gives ∂Xnun = 0, ∂Xnu
′
n = 0, ∂rnun = 0, ∂rnu

′
n = 0, so ∂Xn(un − u′n) = 0, and

∂rn(un− u′n) = 0. The combined use of those incompressibility relations and (2.7) gives

∂rn[(uj − u′j)(un − u′n)] = ∂Xn[(uj + u′j)(un − u′n)]/2, (2.15)

∂rj ∂rn[(uj − u′j)(un − u′n)] = ∂Xj∂Xn[(uj + u′j)(un + u′n)]/4. (2.16)

3. Exact averaged two-point equations
3.1. Ensemble average: exact equations

The ensemble average is defined at each point (X , r, t) as the arithmetical average
over the ensemble. We denote the ensemble average by angle brackets and subscript
E: 〈 · 〉E . Because the ensemble averaging operation is a summation, it commutes with
differential operators; the average of (2.12) is

∂t〈dij〉E + ∂Xn〈Fijn〉E + ∂rn〈dijn〉E
= −〈τij〉E + 2ν(∂rn∂rn〈dij〉E + 1

4
∂Xn∂Xn〈dij〉E − 〈eij〉E). (3.1)

The argument list for each tensor in (3.1) is (X , r, t); the ensemble average does not
eliminate dependence on any independent variable. The average of (2.13) is

∂t〈dii〉E + ∂Xn〈Fiin〉E + ∂rn〈diin〉E = 2ν∂rn∂rn〈dii〉E − 2〈ε+ ε′〉E + 〈w〉E. (3.2)

Exact incompressibility conditions on the second-order velocity structure function
are given by the ensemble averages of (2.15) and (2.16):

∂rn〈djn〉E = ∂Xn〈(uj + u′j)(un − u′n)〉E/2, (3.3)

∂rj ∂rn〈djn〉E = ∂Xj∂Xn〈(uj + u′j)(un + u′n)〉E/4. (3.4)

3.2. Temporal average: exact equations

Because nearly continuous temporal sampling is typical, we represent the temporal
average by an integral, but all results are valid for the sum of discrete points as
well. The temporal average is most useful when the turbulence is nearly statistically
stationary. Let t0 be the start time of the temporal average of duration T . The
operator effecting the temporal average of any quantity Q is denoted by 〈 · 〉T , which
has argument list (X , r, t0, T ); that is,

〈Q〉T ≡ 1

T

∫ t0+T

t0

Q(X , r, t) dt. (3.5)

The argument list (X , r, t0, T ) is suppressed. The temporal average of (2.12)–(2.16)
gives equations that are the same form as (3.1)–(3.4) with one exception: ∂t does not
commute with the integral operator (3.5) such that 〈∂tdij〉T appears, whereas ∂t〈dij〉E
appears in (3.1), and similarly for the trace equation (3.2). Because data are taken at
x and x′ in the rest frame of the anemometers, and ∂t is the time derivative for that
reference frame, it follows that

〈∂tdij〉T ≡ 1

T

∫ t0+T

t0

∂tdijdt = [dij(X , r, t0 + T )− dij(X , r, t0)]/T . (3.6)
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This shows that it is easy to evaluate 〈∂tdij〉T using experimental data because only
the first (at t = t0) and last (at t = t0 + T ) data in the time series are used. One
can make 〈∂tdij〉T as small as one desires by allowing T to be very large provided
that dij(X , r, t0 +T ) does not differ greatly from dij(X , r, t0). This is aided by judicious
choice of t0 and t0 + T for the stationary case, but is not possible in all cases.

3.3. Spatial average: exact equations

Because nearly continuous spatial sampling is typical of DNS, we represent the spatial
average by an integral, but all results can be generalized to the case of a sum of
discrete points. Let the spatial average be over a region R in X -space. The spatial
average of any quantity Q is denoted by 〈Q〉R which has argument list (r, t,R);
that is,

〈Q〉R ≡ 1

V

∫∫∫
R

Q(X , r, t) dX , (3.7)

where V is the volume of the space region R. The argument list (r, t,R) is suppressed.
The spatial average commutes with r and t differential and integral operations, and
with ensemble, time, and r-space averages, but not with ∂Xn . Given any vector qn,
the divergence theorem relates the volume average of ∂Xnqn to the surface average;
that is,

〈∂Xnqn〉R ≡ 1

V

∫∫∫
∂XnqndX =

S

V

(
1

S

∫∫
ŇnqndS

)
≡ S

V

∮
X n

qn, (3.8)

where S is the surface area bounding R, dS is the differential of surface area, and
Ňn is the unit vector oriented outward and normal to the surface. As seen on the
right-hand side of (3.8), we adopt, for brevity, the integral-operator notation∮

X n

≡ 1

S

∫∫
ŇndS.

The spatial average of (2.12) is

∂t〈dij〉R +
S

V

∮
X n

Fijn + ∂rn〈dijn〉R

= −〈τij〉R + 2ν

(
∂rn∂rn〈dij〉R +

1

4

S

V

∮
X n

∂Xndij − 〈eij〉R
)
. (3.9)

The spatial average of (2.13) is

∂t〈dii〉R +
S

V

∮
X n

Fiin + ∂rn〈diin〉R = 2ν∂rn∂rn〈dii〉R − 2〈ε+ ε′〉R + 〈w〉R, (3.10)

where

〈w〉R ≡ S

V

∮
X n

[−2(p− p′)(un − u′n) + 1
2
ν∂Xndij − 2ν∂Xn(p+ p′)

]
.

The spatial average of the incompressibility condition (2.15) is

∂rn〈djn〉R =
S

2V

∮
X n

(un − u′n)(uj + u′j), (3.11)

which is, on the right-hand side, a surface flux of a quantity that depends on large-scale
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structures in the flow. Similarly, (2.16) gives

∂rj ∂rn〈djn〉R =
S

4V

∮
X n

∂Xj [(un + u′n)(uj + u′j)]. (3.12)

3.4. Spatial average: DNS with periodic boundary conditions

The spatial average is particularly relevant to DNS. DNS that is used to investigate
turbulence at small scales often has periodic boundary conditions. For such DNS,
consider the spatial average over the entire DNS domain. Contributions to

∮
X n
qn

from opposite sides of the averaging volume cancel for that case such that
∮
X n
qn = 0

and therefore 〈∂Xnqn〉R = 0. In (3.9) we then have
∮
X n
Fijn = 0 and

∮
X n
∂Xndij = 0. In

(3.10) we have
∮
X n
Fiin = 0 and 〈w〉R = 0. In (3.11), the right-hand side vanishes so

that ∂rn〈djn〉R = 0. Thus, in the DNS case described above, we have

∂t〈dij〉R + ∂rn〈dijn〉R = −〈τij〉R + 2ν(∂rn∂rn〈dij〉R − 〈eij〉R), (3.13)

∂t〈dii〉R + ∂rn〈diin〉R = 2ν∂rn∂rn〈dii〉R − 2〈ε+ ε′〉R, (3.14)

∂rn〈djn〉R = 0, ∂rn〈ejn〉R = 0. (3.15)

Proof of ∂rn〈ejn〉R = 0 is given in Hill (2002).
Performing the r-space divergence of (3.13) and using (3.15), we have

∂rj ∂rn〈dijn〉R = −∂rj 〈τij〉R. (3.16)

This exact result is analogous to the asymptotic result in Frisch (1995), Lindborg
(1996), and Hill (1997).

Using the Taylor series of ε and ε′ around the point X , Hill (2002) obtains the
following exact result for the periodic DNS case considered:

−2〈ε+ ε′〉R = −4〈ε(X , t)〉R, −〈eij〉R = −4ν〈[(∂xnui)(∂xnuj)]x=X 〉R, (3.17)

where the subscript x = X means that the derivatives are evaluated at the point X .
An important aspect of (3.17) is that the right-hand sides depend only on t. Of course,
none of (3.13)–(3.16) depends on X because of the spatial average over X .

No approximations have been used to obtain the above equations for the spatially
periodic DNS case considered.

3.5. Averages over an r-space sphere

The energy dissipation rate averaged over a sphere in r-space has been a recurrent
theme in small-scale similarity theories since its introduction by Obukhov (1962) and
Kolmogorov (1962). By averaging our equations for the trace, we can, for the first
time, produce an exact dynamical equation containing the sphere-averaged energy
dissipation rate. The volume average over an r-space sphere of radius rS of a quantity
Q is denoted

〈Q〉r-sphere ≡ (4πr3
S/3)−1

∫∫∫
|r|6rS

Q(X , r, t) dr. (3.18)

The orientation average over the surface of the r-space sphere of radius rS of a vector
qn(X , r, t) is denoted by the following integral-operator notation:∮

rn

qn ≡ (4πr2
S )−1

∫∫∫
|r|=rS

rn

r
qn(X , r, t) ds, (3.19)
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where ds is the differential of surface area, and rn/r is the unit vector oriented outward
and normal to the surface of the r-space sphere. Note that (4πr2

S )−1 ds = dΩ/4π where
dΩ is the differential of solid angle from the sphere’s centre. Both 〈Q〉r-sphere and

∮
rn
qn

have the argument list (X , rS , t), which is suppressed. The divergence theorem is

〈∂rnqn〉r-sphere = (3/rS )

∮
rn

qn. (3.20)

Because r, X , and t are independent variables, the r-space volume and orientation
averages commute with time and X -space averages and with X - and t-differential
operators, and, of course, with the ensemble average as well. For instance,

〈∂t〈dii〉R〉r-sphere = ∂t〈〈dii〉R〉r-sphere = 〈〈∂tdii〉r-sphere〉R = ∂t〈〈dii〉r-sphere〉R, etc.

The r-sphere average (3.18) can operate on all of the above structure-function
equations; it can operate on unaveraged equations (2.12) and (2.13) as well. These
equations have terms of the form ∂rnqn; e.g. qn = 〈dijn〉R, ∂rn〈dii〉R, 〈diin〉E , 〈dijn〉T ,
∂rn〈dii〉T , etc. By means of (3.20), the volume average in r-space of any term of the
form ∂rnqn produces the orientation average of qn within the subject equation. After
operating on (3.2) with the volume average in r-space (3.18), the term −2〈ε + ε′〉E
in that equation produces −2〈〈ε+ ε′〉r-sphere〉E . Now, 〈〈ε+ ε′〉r-sphere〉E/2 is the sphere-
averaged energy dissipation rate defined in the third equations of both Obukhov
(1962) and Kolmogorov (1962).

The result of the r-space sphere average of any of our equations will be clear from
operating on (3.14). The average of (3.14) over a sphere in r-space of radius rS and
multiplication by rS/3 and use of (3.17) gives

rS

3
∂t〈〈dii〉r-sphere〉R +

∮
rn

〈diin〉R = 2ν

∮
rn

∂rn〈dii〉R − 4rS
3
〈〈ε〉r-sphere〉R. (3.21)

The terms have argument list (rS , t), but 〈〈ε〉r-sphere〉R depends only on t. Of course,
none of the quantities in (3.21) depends on X because of the X -space average.
Despite its simplicity, (3.21) has been obtained without approximations for the freely
decaying spatially periodic DNS case considered; (3.21) applies to inhomogeneous
and anisotropic DNS that have periodic boundary conditions. Nie & Tanveer (1999)
define a structure function S̃3 using time, space, and solid-angle averages acting on diin,
and consider the asymptotic inertial-range case to obtain that S̃3 = −(4/3)εr without
use of local isotropy. An analogous result can be obtained by applying inertial-range
asymptotics to (3.21); namely, neglect the time-derivative term on the basis of local
stationarity and neglect the term proportional to ν.

3.6. Kolmogorov’s equation derived from (3.21)

Most readers are familiar with Kolmogorov’s (1941) famous equation that is valid
for locally isotropic turbulence. A useful point of reference is to derive it from
(3.21). This helps elucidate (3.21). An index 1 denotes projection in the direction of
r, and indices 2 and 3 denote orthogonal directions perpendicular to r. For locally
isotropic turbulence we recall that the only non-zero components of 〈dijn〉R are 〈d111〉R,
〈d221〉R = 〈d331〉R, and of 〈dij〉R are 〈d11〉R, and 〈d22〉R = 〈d33〉R. These components de-
pend only on r such that there is no distinction in an r-space sphere average between
rS and r; thus, we simplify the notation by replacing rS with r. The isotopic-tensor
formula for 〈dijn〉R gives 〈diin〉R = (rn/r)(〈d111〉R + 2〈d221〉R) = (rn/r)〈dii1〉R, substitu-
tion of which into (3.19) gives

∮
rn
〈diin〉R = (rn/r)〈diin〉R = (rn/r)(rn/r)〈dii1〉R = 〈dii1〉R.
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Since (∂rnr) = (rn/r), we have
∮
rn
∂rn〈dii〉R = (rn/r)(∂rnr)∂r〈dii〉R = ∂r〈dii〉R. Kolmogorov

(1941) considered the locally stationary case such that he neglected the time-derivative
term; thus we also neglect that term to obtain from (3.21) that

〈dii1〉R = 2ν∂r〈dii〉R − 4
3
〈ε〉R r. (3.22)

To eliminate 〈d22〉R and 〈〈d221〉R〉 from the expressions 〈dii〉R = 〈d11〉R + 2〈d22〉R
and 〈dii1〉R = 〈d111〉R + 2〈d221〉R, we use the incompressibility conditions 1

2
r∂r〈d11〉R +

〈d11〉R − 〈d22〉R = 0, and r∂r〈d111〉R + 〈d111〉R − 6〈d221〉R = 0, which are valid for local
isotropy (Hill 1997), and were also used by Kolmogorov (1941). Then (3.22) becomes,
after multiplying by 3r−1, ∂r〈d111〉R+(4/r)〈d111〉R = 6ν[∂2

r 〈d11〉R+(4/r)〈d11〉R]−4〈ε〉R;
this is Kolmogorov’s (1941) third equation. After multiplication by r4 and integrating
from 0 to r, we have Kolmogorov’s (1941) equation

〈d111〉R = 6ν∂r〈d11〉R − 4
5
〈ε〉R r. (3.23)

Kolmogorov’s inertial-range 4/5 law and the viscous-range law follow immediately
from (3.23).

4. Examples of opportunities for using the exact equations
4.1. Mitigating anisotropy to check asymptotic laws

Consider homogeneous, anisotropic turbulence. Homogeneity causes ∂Xn operating
on a statistic to vanish (Hill 2001), so ∂Xn〈Fijn〉E and ∂Xn∂Xn〈dij〉E vanish from (3.1),
but 〈τij〉E becomes −2〈(p − p′)(sij − s′ij)〉E (see (2.8)), which does not vanish. Under
the more restrictive assumption of local isotropy, 〈τij〉E = 0 (Hill 1997) such that
the entire non-zero value of 〈τij〉E is a source of anisotropy in (3.1). For the locally
stationary case, the anisotropy quantified by 〈τij〉E is approximately balanced by that
from the term ∂rn〈dijn〉E in (3.1) (Hill 1997, and exactly so for the stationary case).
In contrast consider (3.2). Homogeneity causes ∂XnFiin and w to vanish from (3.2);
equivalently, 〈τii〉E is absent from (3.2) because incompressibility gives sii − s′ii = 0.
Therefore, for the homogeneous, anisotropic case, an important source of anisotropy
of ∂rn〈dijn〉E , namely 〈τij〉E , is absent from ∂rn〈diin〉E . It therefore seems that 〈dii1〉E
will more accurately show the asymptotic inertial-range power law than does 〈d111〉E
(or 〈d221〉E or 〈d331〉E). This result for the homogeneous case extends to the locally
homogeneous case as follows: For inhomogeneous turbulence, the non-vanishing
part of 〈τii〉E , i.e. 〈τii〉E = 2∂Xi〈(p − p′)(ui − u′i)〉E (see (2.11)) is expected to approach
zero rapidly as r decreases for two reasons. First, 〈(p − p′)(ui − u′i)〉E vanishes on
the basis of local isotropy. Second, the operator ∂Xi causes ∂Xi〈(p − p′)(ui − u′i)〉E
to vanish on the basis of local homogeneity. From (2.14), 〈w〉E contains the terms
ν∂Xn∂Xn〈dii〉E/2 and −2ν∂Xn∂Xn〈p + p′〉E; because of the operator ∂Xn∂Xn , these terms
vanish on the basis of local homogeneity. Thus, all terms in 〈w〉E are negligible for
locally homogeneous turbulence. By performing the trace, it appears that anisotropy
has been significantly reduced in (3.2) relative to in (3.1) for the high-Reynolds-
number, locally homogeneous case such that the above hypothesis is extended to
locally homogeneous turbulence. The hypothesis should be checked by comparison
with anisotropic DNS. Evaluation of all terms in (3.1) and (3.2) is the basis for such
an investigation. The above discussion holds for temporal and spatial averages as
well.

To determine scaling properties of the third-order structure function, past theory has
used the isotropic formulas. One can use an equation like (3.2) or its temporal-average
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analogue without an assumption about the symmetry properties (e.g. isotropic) of the
structure functions by means of the sphere average in r-space. Without approximation,
the r-space sphere average produces the orientation-averaged third-order structure
function. It would seem that the orientation average mitigates anisotropy effects.
Thus, the orientation average

∮
rn
〈diin〉E (or

∮
rn
〈diin〉T , or

∮
rn
〈diin〉R) is expected to best

exhibit scaling properties of locally isotropic turbulence, such as the inertial-range
power law with the 4/3 coefficient in (3.21). This hypothesis should be checked by
comparison with anisotropic DNS.

Consider the stationary, homogeneous case. From (3.2), ∂rn〈diin〉E − 2ν∂rn∂rn〈dii〉E
scales with 〈ε+ε′〉E because (∂rn〈diin〉E−2ν∂rn∂rn〈dii〉E)/〈ε+ε′〉E = −2, thereby ensuring
K41 scaling of ∂rn〈diin〉E − 2ν∂rn∂rn〈dii〉E despite anisotropy. In contrast, (3.1) ensures
that scaling only if local isotropy is invoked. Anisotropic DNS can be used to check
whether or not K41 scaling is improved by performing the trace.

4.2. Tests using DNS and experimental data

The spatially periodic DNS case leads to especially simple equations. It seems that
(3.13)–(3.14) offer an ideal opportunity to evaluate the contribution of ∂t〈dij〉R for
freely decaying turbulence, and of 〈τij〉R for anisotropic turbulence, as well as the
balance of the off-diagonal components of (3.13). Because we have not introduced
a force generating the turbulence and because every point in the flow enters into
the X -space average, the DNS must be freely decaying. As shown in Hill (2002), it
is straightforward to include forces in the equations. DNS can completely evaluate
terms in the exact structure-function equations.

4.3. Effect of inhomogeneity on incompressibility conditions

Exact incompressibility relationships (3.3)–(3.4) are obtained that can be used to
quantify the non-zero value of ∂rn〈djn〉E (or of ∂rn〈djn〉T , or of ∂rn〈djn〉R) caused by
inhomogeneity. If inhomogeneity is only in the streamwise (say 1-axis) direction, then
the time average gives ∂rn〈djn〉T = ∂X1

〈(uj + u′j)(u1 − u′1)〉T/2, which can be evaluated
using anemometers. As r → 0, (3.4) becomes the second derivative with respect to
measurement location of the velocity variance and therefore clearly depends on flow
inhomogeneity.

4.4. Quantifying effects of inhomogeneity and anisotropy on scaling exponents

Sreenivasan & Dhruva (1998) note that one could determine scaling exponents with
greater confidence if one had a theory that exhibits not only the asymptotic power
law but also the trend toward the power law. Such a theory must require difficult
measurements or DNS to evaluate such trends. The equations given here are the
required theory for the third-order structure function, given that data must be used to
evaluate the equations in a manner analogous to previously cited evaluations. In fact,
it is not possible that exact equations do not contain the physical effects discussed by
Sreenivasan & Dhruva (1998). They discuss the fact that there is correlation of velocity
increments with large-scale velocity in inhomogeneous turbulence, even for very large
Reynolds numbers and r in the inertial range, but not so in isotropic turbulence.
Our term ∂Xn〈Fiin〉E = ∂Xn〈|u− u′|2(un + u′n)/2〉E in (3.2), and all such analogous terms
in the other equations, explicitly contains such correlation, and the balance of the
equations imparts that correlation effect to the other statistics; all such terms do
vanish for isotropic turbulence. They also discuss the usefulness of graphing all three
terms in (3.23) to discern the onset of the dissipation range. Our equations are exact
there too.
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4.5. Quantifying effects of large-scale structure on small-scale structure

Experimenters remove the mean from an anemometer’s signal before calculating
structure functions from the velocity fluctuations, whereas the exact dynamical equa-
tions contain statistics of the full velocity field. Hill (2002) applied the Reynolds
decomposition to the above exact dynamical equations, and used inertial-range and
viscous-range asymptotics to determine the approximate dynamical equations per-
taining to statistics of fluctuations as well as all approximations that are required
to obtain the approximate equations. The Reynolds decomposition produces terms
that quantify the effect of the large-scale structure of turbulence on the small scales.
For example, ∂Xn〈Fijn〉E produces a generalization of the advective term discovered by
Lindborg (1999). Hill (2002) contrasts the various definitions of local homogeneity
and points out that the only definition that simplifies dynamical equations is that
from Hill (2001).
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